Day 5 - Graphing Linear Equations - Notes

When we write an equation of a line, we use slope intercept form which is y = mx + b, where m represents the slope and b represents the y-intercept.

Slope Intercept Form

y = mx + b

m: slope b: y=intercept

Ex. Going back to yesterday's notes, since you know the slope and y-intercept, create the equation for each line.

Slope and Y-intercepts from an Equation

The equation for a line includes and represents the slope and y-intercept. The equation for a line is y = mx + b, where m is the slope and b is the y-intercept. It is called slope intercept form.

Slope Intercept Form

y = mx + b

m: slope

b: y-intercept

a.
$$y = -4x + 1$$

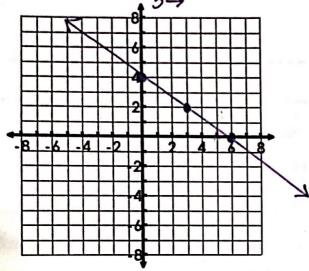
Slope:
$$\frac{-4}{y}$$
 y-intercept: $(0,1)$

b.
$$3k-2y=-16$$

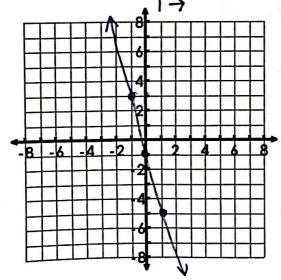
 $-3x$ $-3x$
 $-2y=-3x$
 $-2y=-3x$
 $-2y=-16$
 $-2y=-3x$
 $-2y=-16$
 $-2y=-3x$
 $-2y=-16$
 $-2y=-3x$
 $-2y=-16$
 $-2y=-3x$
 $-2y=-16$
 $-2y=-3x$
 $-2x$
 $-2x$

Slope: 3/2 y-intercept: (0,8)

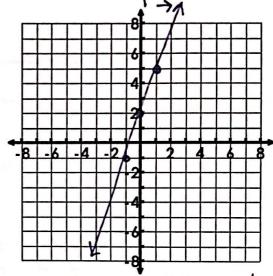
Graphing Linear Functions

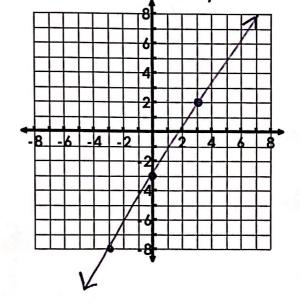

When you graph equations, you have to be able to identify the slope and y-intercept from the equation.

- Step 1: Solve for y (if necessary)
- Step 2. Plot the y-intercept.
- **Step 3**: From the y-intercept, use the slope to calculate another point on the graph.
- Step 4: Connect the points with a ruler or straightedge.


Slope = $\frac{change in y}{change in x} = \frac{+\uparrow -\downarrow}{+\rightarrow -\leftarrow}$

Ex. Graph the following lines:


A.
$$y = -\frac{2}{3}x + 4$$
 $m = \frac{-2}{3}$ $b = \frac{4}{3}$


C.
$$y = -4x - 1$$
 $m = \frac{-4}{0}$ $b = \frac{(0-1)}{1}$

$$y = 3x + 2$$
 $m = 3 \uparrow b = (0,2)$

D.
$$y = \frac{5}{3}x - 3$$
 $m = \frac{5}{3} + \frac{1}{3}$ $b = \frac{(0.73)}{3}$

