Day 1 – Angle Relationships in Triangles Notes

A triangle is a figure formed when three noncollinear (not on the same line) points are connected by segments.

The sides are: ED, DF, EF

Opposite Side of ∠F: ED

The vertices are: E,D,F

Opposite Side of ∠E: FD

The angles are: $\angle E$, $\angle F$, $\angle D$

Opposite Side of ∠D: FF

Triangles can be classified by two categories: by Angles and by Sides.

All Acute Angles

One Obtuse Angle

Right

One Right Angle

Scalene

No Sides Congruent

At Least 2 Sides Congruent

Equilateral

All Sides Congruent

Practice: Classify the triangles by sides and angles.

Think About It: Check which triangles are possible.

	Acute	Obtuse	Right
Scalene	V	V	~
Isosceles	~	~	~
Equilateral	/		

Triangle Sum Theorem

Triangle Sum Theorem: The measures of the three interior angles in a triangle add up to be 180°

This means: $21 + 22 + 23 = 180^{\circ}$

Corollary to Triangle Sum Theorem: The acute angles of a right triangle are complementary.

This means: $41 + 42 = 90^{\circ}$

Proof of the Triangle Sum Theorem:

ven: Triangle ABC with $\overline{AB} \parallel \overline{CD}$ Prove: $m \angle 1 + m \angle 2 + m \angle 3 = 180^{\circ}$ **Statements**

- 2. ∠4 ≅ ∠1
- 3. 45= 22
- 4. *m*∠4 ≅ *m*∠1
- 5.mc5=mc2
- 6. $m\angle ACD = m\angle 5 + m\angle 3$
- $7.m\angle 4+m\angle ACD = 180^{\circ}$
- 8.m24+m25+mc3=180°
- 9. mc1 +mc2 +mc3=180

Reasons

- 1. Given
- 2. Alt. Int 4's are
- 3. Alt. Interior Angles are ≅
- 4. Del 0 = 2'5
- 5. Def. of ≅ Angles
- 6. Angle Addition
- 7. Linear Pair Postulate
- 8. Substitution Property (6,7)
- 9. Substitution Property (4,5)

Examples: Find $m \angle U$.

35+110= 145 180-145 = 35°

4U=35°

Find m∠UPM

1. 21+35=56

2. 180-56=124 (triangle Sum)

3. 180-124= 56 (linear pair)

4. 62+56=118

5. 180-118=620

LUPM= 62°

Find the measure of x.

3x+2x+5+9x-7=180

14x-2=180

14x = 182

X=13

77