\qquad
\qquad

1. Your employer has offered two pay scales for you to choose from. The first option is to receive a base salary of $\$ 250$ a week plus 15% of the price of any merchandise you sell. The second option is represented in the graph below. Compare the properties of the functions.

First Option	
y-intercept:	
slope:	
Second Option	
y-intercept:	
slope:	

Total price of merchandise sold (\$)
a. Which function has a higher starting salary and why?
b. Which function has a greater commission rate and why?
2. Compare the properties of the functions below in terms of the problem situation:

Rental Store A

A rental store charges $\$ 40$ to rent a steam cleaner, plus an additional $\$ 4$ per hour.
a. Which function has a higher staring price and why?
b. Which function has a higher rental cost per hour and why?

Rental Store B

The table below shows the total cost in dollars to rent a steam cleaner at a different rental store, $g(x)$ represents the total cost after x hours.

Hours (\boldsymbol{x})	Total $\operatorname{cost}(\boldsymbol{g}(\boldsymbol{x})$)
3	46
4	53
5	60
6	67

3. Compare the properties of the functions below in terms of the problem situation:

Job Offer A

Jazlynn received a job offer with a starting salary of $\$ 32,000$ and a 1.5% increase every year.

Job Offer B

She received a second job offer represented by the following equation: $f(x)=30,000(1+0.02)^{x}$.
b. Which function has a greater pay increase rate and why?
4. Compare the properties of the functions below in terms of the problem situation:

Allatoona High School

The enrollment of Allatoona High School, $f(x)$, after x years is modeled by the function

$$
f(x)=1700(1+0.025)^{x}
$$

a. Which school has a higher staring population and why?

Harrison High School

The following table shows the enrollment of Harrison High School, $g(x)$, after x years.

\boldsymbol{x}	$\boldsymbol{g}(\boldsymbol{x})$
0	1900
1	1872
2	1843
3	1816
4	1789

b. Which function has a greater enrollment rate and why?
5. Three turtles are running a race. The following are their information from the starting line in \boldsymbol{t} number of minutes.

Elmer: $\quad E(t)=t^{2}-4 t+4$
Fred: $F(t)=3(t-2)^{2}-18$

George:	X	1	2	3	4	5
$\mathrm{G}(\mathrm{t})$	-18	-20	-18	-12	-2	

a. Which turtle is winning the race at $t=2$?
b. Which turtle is winning the race at $t=6$?
c. Who would you predict to win the race if the race was 40 feet long and why?
6. Three students are shooting wads of paper with a rubber band, aiming for a trash can in the front of the room. The height of each student's paper wad, in feet, is given as a function of the time in seconds. Which student's paper wad flies the highest?

- The path of Micaiah's paper was is modeled by the equation $f(x)=-x^{2}+2 x+7$
- After 3 seconds, Trey's paper wad achieves a maximum height of 6.5 feet above the floor.
- Quincy's paper wad is estimated to reach the heights shown in the table below.

\boldsymbol{x}	0	2	3	4
\boldsymbol{y}	3	6	7	6

