Area, Surface Area, and Volume Formulas

Area	Surface frea	Volume
$\begin{gathered} \frac{\text { Rectangle }}{A=/ W} \\ I=\text { length }, W=\text { width } \end{gathered}$	$S A \stackrel{\text { Prism }}{=2 B+P h}$ $B=$ area of base, $h=$ height, $\mathrm{P}=$ perimeter of base Rectangular Prism $S A=2(l w+l h+w h)$ $\mathrm{l}=$ length, $\mathrm{h}=$ height, $\mathrm{w}=$ width	$\begin{gathered} \frac{\text { Prism }}{V=B h} \\ \mathrm{~B}=\text { area of base }, \mathrm{h}=\text { height } \end{gathered}$
$\begin{aligned} & \frac{\text { Square }}{A=s^{2}} \\ & s=\text { side } \end{aligned}$	$\begin{gathered} \text { Pyramid } \\ S A=B+1 / 2 P s \\ B=\text { area of base, } s=\text { slant } \\ \text { height, } \mathrm{P}=\text { perimeter of } \\ \text { base } \\ \frac{\text { Square Pyramid }}{S A=2 b s+b^{2}} \\ \mathrm{~b}=\text { base }, s=\text { slant height } \end{gathered}$	$\begin{gathered} \frac{\text { Pyramid }}{V=\frac{1}{3} B h} \\ \mathrm{~B}=\text { area of base, } \mathrm{h}=\text { height } \end{gathered}$
$\begin{gathered} \frac{\text { Triangle }}{A=1 / 2 b h} \\ b=\text { base, } h=\text { height } \end{gathered}$	Cylinder $\begin{aligned} & S A=2 \pi r^{2}+2 \pi r h \\ & r=\text { radius, } h=\text { height } \end{aligned}$	$\begin{gathered} \frac{\text { Cylinder }}{V=\pi r^{2} h} \\ r=\text { radius, } h=\text { height } \end{gathered}$
$\begin{gathered} \frac{\text { Trapezoid }}{=1 / 2 h\left(b_{1}+b_{2}\right)} \\ h=\text { height, } b_{1} \& b_{2}=\text { base } \end{gathered}$	$\begin{gathered} \frac{\text { Cone }}{\pi r^{2}+\pi r s} \\ \mathrm{r}=\text { radius, } \mathrm{s}=\text { slant height } \end{gathered}$	Cone $V=\overline{\frac{1}{3} \pi r^{2} h}$ $r=\text { radius, } h=\text { height }$
$\begin{gathered} \frac{\text { Circle }}{\mathrm{A}=\pi r^{2}} \\ r=\operatorname{radius}, \pi=3.14 \end{gathered}$	$\begin{aligned} & \frac{\text { Sphere }}{} \\ & S A=4 \pi r^{2} \\ & r=\text { radius } \end{aligned}$	Sphere $\begin{aligned} & V=\frac{4}{3} \pi r^{3} \\ & r=\text { radius } \end{aligned}$
$\begin{gathered} \frac{\text { Regular Polygon }}{A=1 / 2 \mathrm{~Pa}} \\ p=\text { perimeter, } a=\text { apothem } \end{gathered}$		

Perimeter = distance around a figure (excludes circles)
Circumference $=$ distance around a circle ($C=2 \pi r$ or $C=\pi D$)

